

Basic Transformations

Making Data Machine Learning Ready

Charles Parker

VP ML Algorithms, BigML

BigML, Inc

In a Perfect World...

Q: How does a physicist milk a cow?

A: Well, first let us consider a spherical cow...

Q: How does a data scientist build a model?

A: Well, first let us consider perfectly formatted data...

The Dream

Data Transformation

- Data Structure
 - Scattered across systems
 - Wrong "shape"
 - Unlabelled data
- Data Value
 - Format: spelling, units
 - Missing values
 - Non-optimal correlation
 - Non-existant correlation
- Data Significance
 - Unwanted: PII, Non-Preferred
 - Expensive to collect
 - Insidious: Leakage, obviously correlated

Feature Engineering

Feature Selection

Data Structure

Remember ML Tasks

CLASSIFICATION

Will this component fail?

REGRESSION

How many days until this component fails?

TIME SERIES FORECASTING

How many components will fail in a week from now?

CLUSTER ANALYSIS

Which machines behave similarly?

ANOMALY DETECTION

Is this behavior normal?

ASSOCIATION DISCOVERY

What alerts are triggered together before a failure?

What "shape" is the data for each ML task?

Classification

Testing

Predicting

Regression

Training

Testing

Anomaly Detection

Cluster Analysis

Association Discovery

Fields (Features)

Tabular Data (rows and columns):

- Each row
 - is one instance
 - contains all the information about that one instance.
 - For Time Series, the rows are **not** independent
- Each column
 - is a field that describes a property of the instance.

15

Data Transformations

BigML, Inc

SF Restaurants Data

https://blog.bigml.com/2013/10/30/data-preparation-for-machine-learning-using-mysql/https://data.sfgov.org/Health-and-Social-Services/Restaurant-Scores/stya-26eb


```
create database sf_restaurants;

create table businesses (business_id int, name varchar(1000), address varchar(1000), city varchar(1000), state varchar(100), postal_code varchar(100), latitude varchar(100), longitude varchar(100), phone_number varchar(100));
load data local infile './businesses.csv' into table businesses fields terminated by ',' enclosed by '"' lines terminated by '\r\n' ignore 1 lines;

create table inspections (business_id int, score varchar(10), idate varchar(8), itype varchar(100));
load data local infile './inspections.csv' into table inspections fields terminated by ',' enclosed by '"' lines terminated by '\r\n' ignore 1 lines;

create table violations (business_id int, vdate varchar(8), description varchar(1000));
load data local infile './violations.csv' into table violations fields terminated by ',' enclosed by '"' lines terminated by '\r\n' ignore 1 lines;

create table legend (Minimum_Score int, Maximum_Score int, Description varchar(100));
load data local infile './legend.csv' into table legend fields terminated by ',' enclosed by '"' lines terminated by '\r\n' ignore 1 lines;
```


SF Restaurants Data

BigML, Inc

Building a ML Application

Task

State the Problem

- Predict rating: Score from 0 to 100
 - This is a regression problem
- Based on business profile:
 - Description: kitchen, cafe, etc.
 - Location: zip, latitude, longitude

Problem: Each restaurant may be inspected more than once - which score are we going to use as the label?

Aggregations

Inspections

business_id	score	date
10	82	20160503
10	94	20140729
10	92	20140114
19	94	20160513
19	94	20141110
19	94	20140214
24	98	20161005
24	96	20160311
24	96	20141124
24	96	20140612
24	100	20131118

Tabular Data (rows and columns):

- Each row
 - is one instance
 - contains all the information about that one instance.

Aggregations Demo

BigML, Inc

Time Windows

Rather than aggregate, create new features using values over different periods of time

create table scores_2013 select a.business_id, a.score as score_2013, a.idate as idate_2013 from inspections as a JOIN (select business_id, max(idate) as idate from inspections where substr(idate,1,4) = "2013" group by business_id) as b where a.business_id = b.business_id and a.idate = b.idate;

create table scores_over_time select * from businesses left join scores_2013 USING (business_id) left join scores_2014 USING (business_id);

State the Problem

- Predict rating: Score from 0 to 100
 - This is a regression problem
- Based on business profile:
 - Description: kitchen, cafe, etc.
 - Location: zip, latitude, longitude

Problem: Each restaurant may be inspected more than once - which score are we going to use as the label?

Solution: Aggregate the score into an avg_score on business_id

Problem: This data is in two datasets: "business" and "avg_score"

Denormalizing with Joins

Data is usually normalized in relational databases, ML-Ready datasets need the information de-normalized in a single dataset.

Add Label

create table scores_last_label select scores_last.*, Description as score_label from scores_last join legend on score <= Maximum_Score and score >= Minimum_Score;

Joins

- Datasets to join need to have a field in common
 - joining sales and demographics on customer_id
 - joining employee and budget details on department_id
- Datasets to join do not need to have the same dimensions
- Joins can be performed in several ways
 - Left, Right, Inner, Outer...

- In a Left join of dataset A to B:
 - Returns all records from the left A,
 and the matched records from B

The result is NULL from B, if there is no match.

A		Left join	В		=	Αl	eft joi	n B
_id	field1		_id	field2		_id	field1	field2
1	34		1	red		1	34	red
2	56		2	green		2	56	green
3	123		4	blue		3	123	null
4	56		6	black		4	56	blue
5	79					5	79	null

Right Join

- In a Right join of dataset A to B:
 - Returns all records from the right B,
 and the matched records from A

The result is NULL from A, if there is no match.

Right join

A		
_id	field1	
1	34	
2	56	
3	123	
4	56	
5	79	

_id	field2
1	red
2	green
4	blue
6	black

=

B

A r	A right join B		
_id	field2	field1	
1	red	34	
2	green	56	
4	blue	56	
6	black	null	

BigML, Inc Basic

Inner Join

- In an Inner join of dataset A to B:
 - Returns only records from the left A,
 that match records from B

If there is no match between A and B, the record is ignored

A		Inner join
_id	field1	
1	34	
2	56	
3	123	
4	56	
5	79	
"3" a		

_id	field2	
1	red	
2	green	
4	blue	
6	black	

A inner join B		
_id	field1	field2
1	34	red
2	56	green
4	56	blue

BigML, Inc

Full Outer Join

- In a Full join of dataset A to B:
 - Returns all records from the left A,
 and records from B

If there is no match in either A and B, the field is null

A		full join
_id	field1	
1	34	
2	56	
3	123	
4	56	
5	79	

_id	field2	
1	red	
2	green	
4	blue	
6	black	

A full join B		
_id	field1	field2
1	34	red
2	56	green
3	123	null
4	56	blue
5	79	null
6	null	black

Warning: Non-unique IDs

Consider a left join A with B where B has non unique _id entries

A	
_id	field1
1	34
2	56
3	123
4	56
5	79

full join

_id field2		
1	red	
2	green	
4	blue	
6	black	
4	green	

_id	field1	field2
1	34	red
2	56	green
3	123	null
4	56	blue
4	56	green
5	79	null
6	null	black

A full ioin B

Join Demo

BigML, Inc

State the Problem

- Predict rating: Score from 0 to 100
 - This is a regression problem
- Based on business profile:
 - Description: kitchen, cafe, etc.
 - Location: zip, latitude, longitude

Problem: Each restaurant may be inspected more than once - which score are we going to use as the label?

Solution: Aggregate the score into an avg_score on business_id

Problem: This data is in two datasets: "business" and "avg_score" Solution: Left join "business" with "avg_score" on "business_id"

- Create a Source and Dataset for each of:
 - Businesses
 - Violation
- Clean the violation description
 - Hint: (replace (field "description") "\\[.*" "")
- Aggregate the violations
 - count: violations
 - concat: violiation description
- Join the business datasets to the violations
- Bonus:
 - Join last_inspections and legend
 - build a model which predicts the score legend

Updates

Need a current view of the data, but new data only comes in batches of changes

Streaming

Data only comes in single changes

