

Feature Engineering

Creating Features that Make Machine Learning Work

Poul Petersen

CIO, BigML, Inc

BigML, Inc

Gaming the ML Performance

A Tale of Two Strategies...

- Use ML to improve performance automatically
 - OptiML
 - Unsupervised Feature Engineering (PCA, Topic Models, Clustering, Anomaly Detection, etc)
 - Automated feature selection
- Use domain knowledge to improve performance manually
 - Bespoke features (requires expertise)
 - Fusions of models
 - Manual feature selection

what is Feature Engineering

Feature Engineering: applying <u>domain knowledge</u> of the data to create new features that allow ML algorithms to <u>work better</u>, or to <u>work at all</u>.

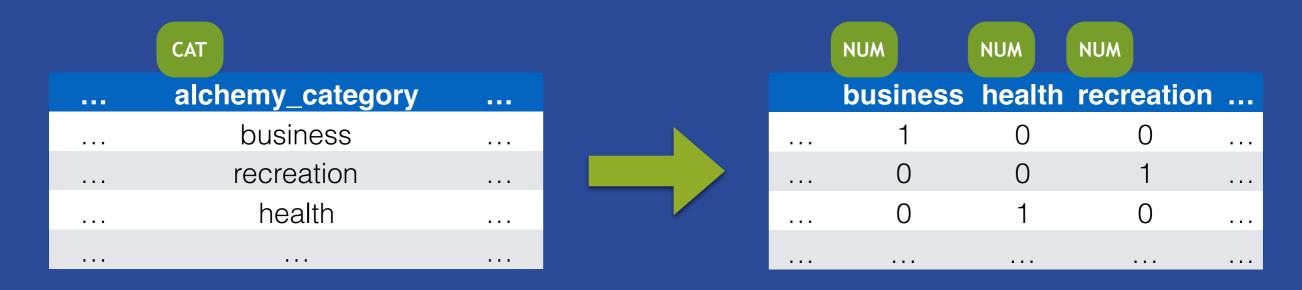
- This is really, really important more than algorithm selection!
 - In fact, so important that BigML often does it automatically
- ML Algorithms have no deeper understanding of data
 - Numerical: have a natural order, can be scaled, etc
 - Categorical: have discrete values, etc.
- The "magic" is the ability to find patterns quickly and efficiently
- ML Algorithms only know what you tell/show it with data
 - Medical: Kg and M, but BMI = Kg/M² is better
 - Lending: **Debt** and **Income**, but **DTI** is better
- Intuition can be risky: remember to prove it with an evaluation!

Built-in Transformations

Date-Time Fields

- Date-Time fields have a lot of information "packed" into them
- Splitting out the time components allows ML algorithms to discover time-based patterns.

Categorical Fields for Clustering/LR



- Clustering and Logistic Regression require numeric fields for inputs
- Categorical values are transformed to numeric vectors automatically*
- *Note: In BigML, clustering uses k-prototypes and the encoding used for LR can be configured.

Text Fields

TEXT

Be not afraid of greatness: some are born great, some achieve greatness, and some have greatness thrust upon 'em.

- Unstructured text contains a lot of potentially interesting patterns
- Bag-of-words analysis happens automatically and extracts the "interesting" tokens in the text
- Another option is Topic Modeling to extract thematic meaning

Help ML to Work Better

When text is not actually <u>unstructured</u>

```
{
    "url":"cbsnews",
    "title":"Breaking News Headlines
    Business Entertainment World News ",
    "body":" news covering all the latest
    breaking national and world news
    headlines, including politics, sports,
    entertainment, business and more."
}
```

- In this case, the text field has structure (key/value pairs)
- Extracting the structure as new features may allow the ML algorithm to work better

FE Demo #1

BigML, Inc

Help ML to Work at all

When the pattern does not exist

Highway Number	Direction	Is Long
2	East-West	FALSE
4	East-West	FALSE
5	North-South	TRUE
8	East-West	FALSE
10	East-West	TRUE

Goal: Predict principle direction from highway number

FE Demo #2

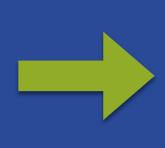
BigML, Inc

Feature Engineering

Discretization

NUM	Total Spend	
	7,342.99	
	304.12	
	4.56	
	345.87	
	8,546.32	

"Predict will spend \$3,521 with error \$1,232"



CAT	Spend Category
	Top 33%
	Bottom 33%
	Bottom 33%
	Middle 33%
	Top 33%

"Predict customer will be Top 33% in spending"

FE Demo #3

BigML, Inc 12

Built-ins for FE

- Discretize: Converts a numeric value to categorical
- Replace missing values: fixed/max/mean/median/etc
- Normalize: Adjust a numeric value to a specific range of values while preserving the distribution
- Math: Exponentiation, Logarithms, Squares, Roots, etc.
- Types: Force a field value to categorical, integer, or real
- Random: Create random values for introducing noise
- Statistics: Mean, Population
- Refresh Fields:
 - Types: recomputes field types. Ex: #classes > 1000
 - Preferred: recomputes preferred status

Flatline Add Fields

Computing with Existing Features

NUM	NUM
Debt	Income
10,134	100,000
85,234	134,000
8,112	21,500
0	45,900
17,534	52,000

Debt to Income Ratio
0.10
0.64
0.38
0
0.34

NUM

(/ (field "Debt") (field "Income"))

What is Flatline?

Flatline: a domain specific language for feature engineering and programmatic filtering

DSL:

- Invented by BigML Programmatic / Optimized for speed
- Transforms datasets into new datasets
- Adding new fields / Filtering
- Transformations are written in lisp-style syntax

Feature Engineering

Computing new fields: (/ (field "Debt") (field "Income"))

Programmatic Filtering:

 Filtering datasets according to functions that evaluate to true/false using the row of data as an input.

- Lisp style syntax: Operators come first
 - Correct: (+123) => NOT Correct: (1+2+3)
- Dataset Fields are first-class citizens
 - (field "diabetes pedigree")
- Limited programming language structures
 - let, cond, if, map, list operators, */+-, etc.
- Built-in transformations
 - statistics, strings, timestamps, windows

Flatline s-expressions

Adding Simple Labels to Data

Un-Labelled Data

Name	Month - 3	Month - 2	Month - 1
Joe Schmo	123.23	0	0
Jane Plain	0	0	0
Mary Happy	0	55.22	243.33
Tom Thumb	12.34	8.34	14.56

Define "default" as missing three payments in a row

Name	Month - 3	Month - 2	Month - 1	Default
Joe Schmo	123.23	0	0	FALSE
Jane Plain	0	0	0	TRUE
Mary Happy	0	55.22	243.33	FALSE
Tom Thumb	12.34	8.34	14.56	FALSE

(= 0 (+ (abs (f"Month - 3")) (abs (f"Month - 2")) (abs (f"Month - 1")))

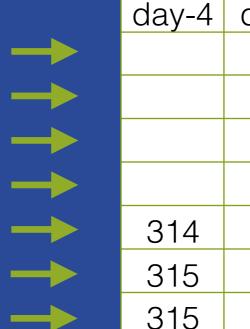
Your Turn!

- Create a Source and Dataset from "Loan Payment"
- Engineer a new feature that is
 - True: If 3 payments in a row are zero
 - False: otherwise

Flatline s-expressions

Shock: Deviations from a Trend

date	volume	price
1	34353	314
2	44455	315
3	22333	315
4	52322	321
5	28000	320
6	31254	319
7	56544	323
8	44331	324
9	81111	287
10	65422	294
11	59999	300
12	45556	302
13	19899	301



day-3 day-2 4davg day-1 314 314 315 314 315 315 316.25 315 315 321 317.75 315 321 320 315 321 320 319 318.75

> Current - (4-day avg) std dev

Flatline s-expressions

Shock: Deviations from a Trend

Current - (4-day avg) std dev

Current: (field "price")

4-day avg: (avg-window "price" -4 -1)

std dev: (standard-deviation "price")

(/ (- (f "price") (avg-window "price" -4, -1)) (standard-deviation "price"))

Advanced s-expressions

Highway is Even?

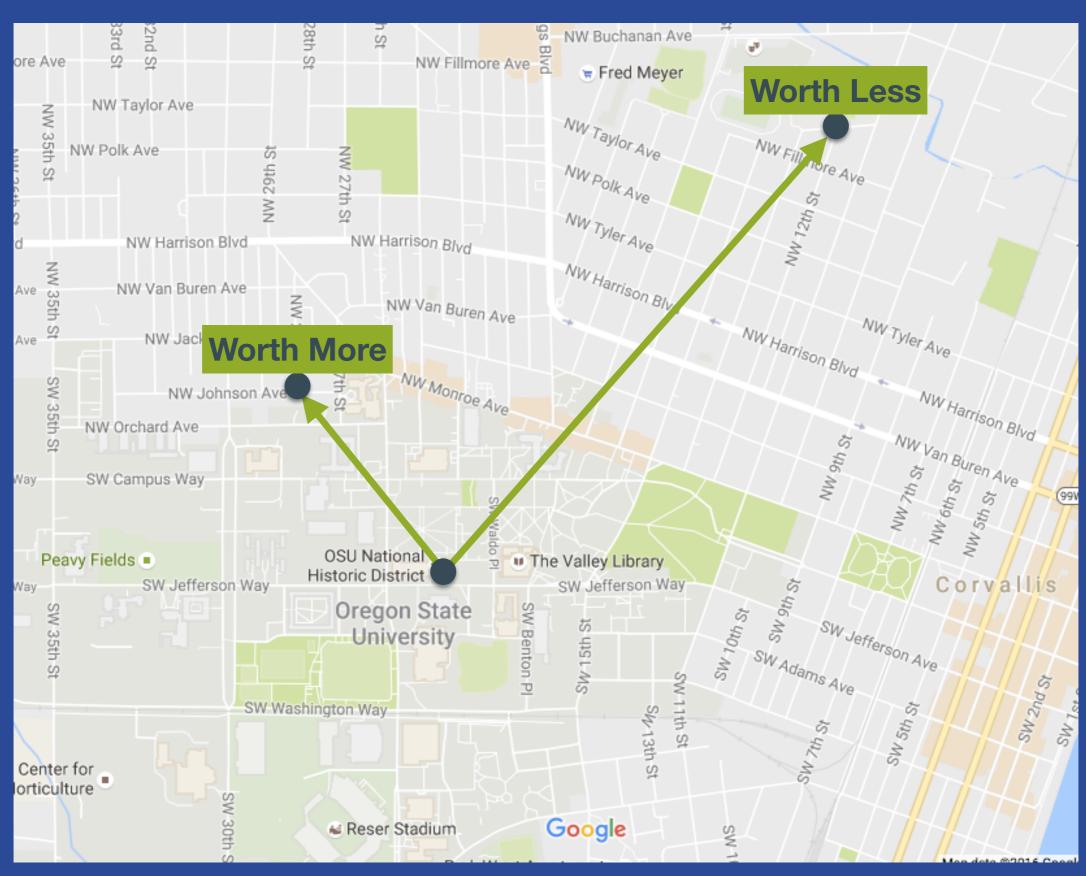
(= (mod (field "Highway Number") 2) 0)

Moon Phase%

```
(mod
       (epoch (field "date-field"))
       1000
    621300
  2551443
2551442
```

https://gist.github.com/petersen-poul/0cf5022ed1768837fe13af72b2488329

Home Price Feature



Home Price Feature

LATITUDE	LONGITUDE	REFERENCE LATITUDE	REFERENCE LONGITUDE
44.583	-123.296775	44.5638	-123.2794
44.604414	-123.296129	44.5638	-123.2794
44.600108	-123.29707	44.5638	-123.2794
44.603077	-123.295004	44.5638	-123.2794
44.589587	-123.301154	44.5638	-123.2794

Distance (m)
700
30.4
19.38
37.8
23.39

Haversine Formula

The haversine formula [edit]

For any two points on a sphere, the haversine of the central angle between

$$ext{hav}igg(rac{d}{r}igg) = ext{hav}(arphi_2 - arphi_1) + ext{cos}(arphi_1) ext{cos}(arphi_2) ext{hav}$$

where

hav is the haversine function:

$$ext{hav}(heta) = \sin^2\left(rac{ heta}{2}
ight) = rac{1-\cos(heta)}{2}$$

- d is the distance between the two points great circle of the sphere; see sphere; see
- r is the radius of the sphere,
- φ₁, φ₂: latitude of point 1 and latitude of point 1.
- λ_1, λ_2 : longitude of point 1 and longitude at 2, in radians

On the left side of the equals sign $\frac{d}{r}$ is the compared assuming angle assuming angle assumed in radians (note that φ and λ) converted from radians to degrees by multiplying by $\frac{180}{\pi}$ as usual).

Solve for *d* by applying the inverse haversine (in the late) or the arcsine (inverse sine) function:

$$d = r \operatorname{hav}^{-1}(h) = 2r \arcsin\left(\sqrt{h}\right)$$

where h is $hav(\frac{d}{r})$, or more explicitly:

$$egin{aligned} d &= 2rrcsin\Bigl(\sqrt{ ext{hav}(arphi_2-arphi_1)+\cos(arphi_1)\cos(arphi_2)} + lpha \ &= 2rrcsin\Bigl(\sqrt{\sin^2\Bigl(rac{arphi_2-arphi_1}{2}\Bigr)+\cos(arphi_1)\cos(arphi_2)\sin^2\Bigl(rac{\lambda_2-\lambda_1}{2}\Bigr)\Bigr) \end{aligned}$$

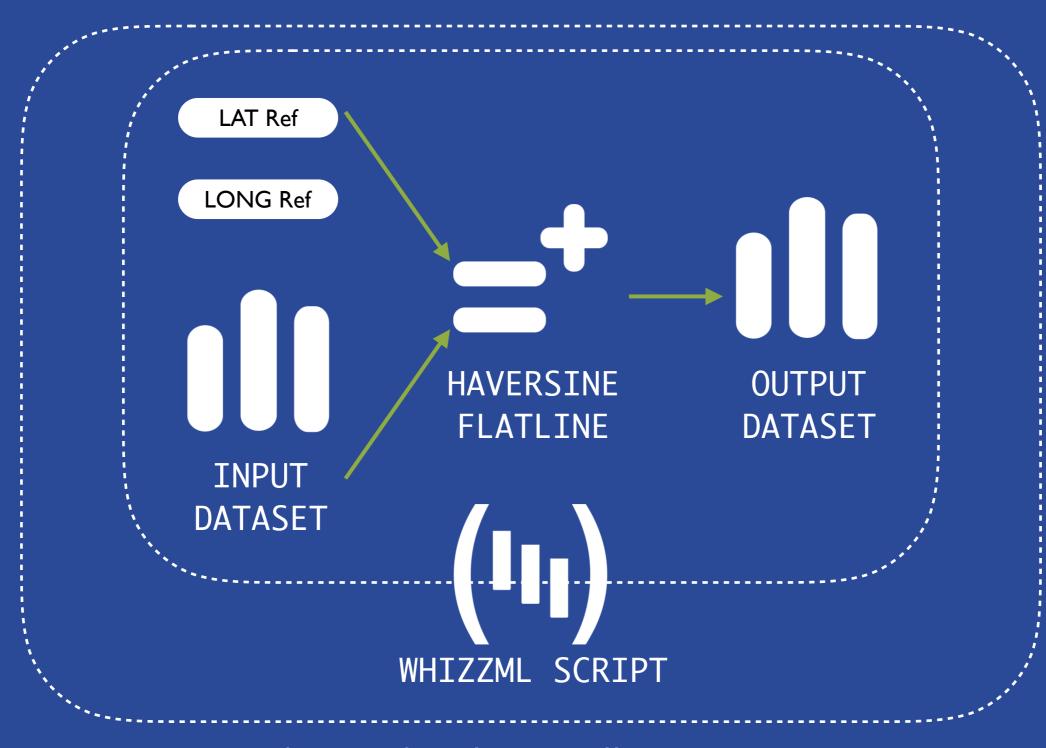
https://en.wikipedia.org/wiki/Haversine_formula

ml

Advanced s-expressions

Distance Lat/Long <=> Ref (Haversine)

```
(let
     R 6371000
    latA (to-radians {lat-ref})
     latB (to-radians (field "LATITUDE"))
    latD ( - latB latA )
    longD ( to-radians ( - ( field "LONGITUDE" ) {long-ref} ) )
    a (+
         ( square ( sin ( / latD 2 ) ) )
           (cos latA)
           (cos latB)
           (square ( sin ( / longD 2)))
    c ( * 2 ( asin ( min (list 1 (sqrt a)))))
  ( * R c )
```



https://bigml.com/gallery/scripts

WhizzML Gallery

BigML, Inc

Advanced s-expressions

JSON Parser???

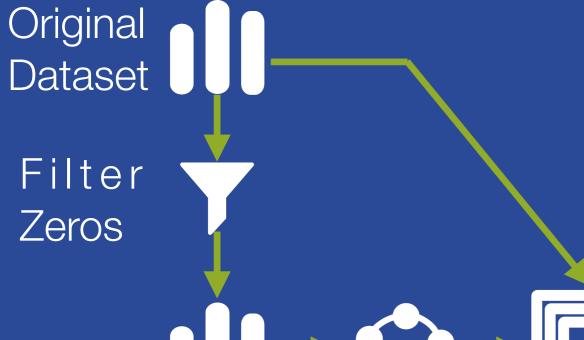
- Remember, Flatline is **not** a full programming language
- No loops
- No accumulated values
- Code executes on one row at a time and has a limited view into other rows

https://gist.github.com/petersen-poul/504c62ceaace76227cc6d8e0c5f1704b

Your Turn!

Fix Missing Values in a "Meaningful" Way

- Start with Diabetes (full dataset)
- Filter to remove insulin=0
- Build a "clean" model to predict insulin
- Batchpredict Insulin (full dataset)
- Output the batchp as a dataset
 - Engineer a new feature that is the original insulin value when !=0 and the predicted value when =0



Clean Model insulin Dataset

Predict insulin

Amended Select Dataset

insulin

Fixed Dataset

(if (= (field "insulin") 0) (field "predicted insulin") (field "insulin"))

Feature Selection

BigML, Inc 31

Feature Selection

Care must be taken when creating features!

- Model Summary
 - Field Importance
- Algorithmic
 - Best-First Feature Selection
 - Boruta
- Leakage
 - Tight Correlations (AD, Plot, Correlations)
 - Test Data
 - Perfect future knowledge

Leakage

- sales pipeline where step n-1 has no other outcome then step n.
- stock close predicts stock open
- churn retention: the worst rep is actually the best (correlation != causation)
- cancer prediction where one input is a doctor ordered test for the condition
- account ID predicts fraud (because only new accounts are fraudsters)

