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Logistic Regression

Logistic

Is a algorithm

?

implies a discrete objective. How can this be a

e \\Vhy do we need another classification algorithm??

® Mmore questions....
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Linear Regression
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Polynomial Regression

diabetes

5.00 10.00 150 20.0 250 30.0 350 400 450
triceps skin thickness

Logistic Regression

50.0

55.0

ml



Regression

Regression is the process of "fitting" a function to the data

e [inear Regression: [fo+ [1+(INPUT) = OBJECTIVE

e Quadratic Regression: o+ [1+(INPUT) -(INPUT)2 =~ OBJECTIVE

e Decision Tree Regression: DT(INPUT) = OBJECTIVE

e \What if we want to do a classification problem: T/F or 1/0

e \Nhat function can we fit to discrete data”

BigML, Inc Logistic Regression

ml



BigML, Inc

Discrete Data Function?
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Discrete Data Function?
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false

40.0

Logistic Function
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e | ooks promising, but still not "discrete”
e \What about the "green” in the middle”

e | et’'s change the problem...
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Modeling Prolbabillities
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Logistic Regression

LR Is a
to

algorithm ... that uses a
of the discrete objective

e Assumes that output Is linearly related to "predictors”

e \Wh

at”? (hang in there...)

ml

e Sometimes we can "fix" this with feature engineering

e Question: how do we "fit" the logistic function to real data”
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Logistic Regression

fo IS the "intercept”
(1 1s the "coefticient”
Given training data consisting of inputs x, and probabillities P

Solve for o and B, to fit the logistic function
How? The inverse of the logistic function is called the "logit":

If ((;C'))) - (1L1f()x)) Bot Bix

In which case solving is now a linear regression

But this is only one dimension, that is one feature x...
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Logistic Regression

For "i" dimensions, X =[ x1, x2,°**, xi ], we solve

where:

f(X)=BotB-X=pLot+ Lax1+ -
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Interpreting Coefficients _

e | R computes [y and coefficients [ for each feature x;

e negative B; = negatively correlated: x;™ then P(X){
® positive ; = positively correlated: x;’T then P(X) 1
* “larger” f; = more impact: x;j > then P(X)>»
e "smaller" = less impact: x> then P(X) >

e (3 "size" should not be confused with field importance

e Can include a coefficient for "missing” (if enabled)
* P(X) = pot -+ pjxjt

e Binary Classification (true/false) coefficients are complementary
e P(True) = 1- P(False)
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LR Parameters it

. Replaces missing numeric values
. Adds a field for missing numerics
. Extended statistics, ex: p-value (runs slower)
. Enables/Disables the intercept term - So
e Don'tdisable this...
. Reduces over-titting by minimizing f;
. . prefers reducing individual coetticients
. (default): prefers reducing all coefficients
. Higher values reduce regularization
. The minimum error between steps to stop
e Larger values stop earlier but quality may be less
. Ensures that all features contribute equally
e Don’t change this unless you have a specific reason
Field Encodings: Changes the way categorical values are handled.
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Curvilinear LR ml

e | ogistic Regression is expecting a linear relationship
between the features and the objective

e Remember - it’s a linear regression under the hood
e Thisis actually pretty common in natural datasets
e But non-linear relationships will impact model quality

This can be addressed by adding non-linear

transformations to the

e Knowing w

e domain

nich transformations requires

Knowledge

® cxperimentation

e poth
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Curvilinear LR

Instead of

,Bo+ﬁ1x1

We could add a feature

ﬁo T ﬁ1x1 + ﬁzxz
Where

0.00 100.0 200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1.0k

X1 = X)2

Possible to add any higher order terms or other functions to
match shape of data
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LR vs DT

e [EXxpects a "smooth” linear o
relationship with predictors.

e | R is concerned with probability of J
a discrete outcome.

e | ots of parameters to get wrong: .
regularization, scaling, codings

e Slightly less prone to over-fitting J

e Because fits a shape, might work o

better when less data available.

BigML, Inc Logistic Regression

ml

Adapts well to ragged non-linear
relationships

No concern: classification,
regression, multi-class all fine.

Virtually parameter free

Slightly more prone to over-fitting

Prefers surfaces parallel to
parameter axes, but given enough

data will discover any shape.
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Your Turn!

Build a Logistic Regression with the Diabetes 80% Training set.
What feature is the best single predictor of Diabetes”
Evaluate with the 20% Test set.

Compare to the Model and Ensemble evaluations you did
earlier

Which performs better?
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