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Where to Start?
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Step 
1 FinishStep 

2 - - - - - - - -

???“Let’s predict  
customer churn!”

“Here are the 
customers we predict 
will leave our service”
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Where to Start?
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Step 
1 FinishStep 

2 - - - - - - - -

???“Let’s detect  
fraud!

“Here are the 
transactions we should 
stop immediately.
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Getting Started Guide
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• Remember: ML finds patterns in data enabling predictions about 
future events 

• This means you need data 
• What data depends on what you want to predict 
• And the data you have or can collect 

• Data needs to have patterns related to what you want to predict 
• Not magic: still can’t predict random events, lotteries, etc 

• Your problem statement needs to be specific 
• Not “Let’s predict churn” 
• But “Let’s predict churn by looking at the profile data of all 

previous customers of our service who have/have not 
churned” 

• This can be tricky…

State the problem as an ML Task
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Where to Start?
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Step 
1 Finish

“Let’s predict  
the Oscars!”

“Here are the  
predicted winners”

Step 
2 - - - - - - - -

???
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Predicting the Oscars
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• 6 out of 6 right! 
• 8 out of 8 actually, but 

probability of the predictions 
was “too low” 
• Adapted Screenplay 
• Original Screenplay

BigML Scoresheet

2018
• 4 our of 8 major awards 

correctly predicted 
• Probabilities were lower this 

year 
• This is still significantly  

better than guessing

2019
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Yay - Machine Learning!
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Contrapositive Time
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We can predict the Oscars ⇒ we can predict lottery numbers

Assertion:

We can’t predict lottery numbers ⇒ we can’t predict the Oscars

Contrapositive:

Contradiction!
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Can’t Predict Lottery Numbers?
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• The motion is chaotic (that 
is extremely non-linear) 

• Even small changes in the 
initial conditions greatly 
change the outcome 

• And you can’t measure the 
initial conditions with 
infinite precision (thanks Heisenberg)

Nope Sorry! Two problems:

Question:  
    Why can we predict the Oscars?
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Wait, But I Read…
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• ML to predict the 
propagation of a flame front 

• This is also a chaotic system 
• Succeeding in predicting out 

to 8 Lyapunov times 
• Still a short amount of time 
• A really short amount of time 
• Lottery balls are allowed to 

“mix” for many, many 
Lyapunov times 

• Does not contradict 
statement about predicting 
the lottery!
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How an Oscar is Won
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voting

intention?

7,000+ members

Question:  
Don’t we have the same problem as the lottery with 

predicting intention?
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7,000 Chaotic Systems?
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• Personal tastes 
• Political considerations 
• Values 
• Cultural upbringing 
• Critical education 
• Pet peeves 
• Corruption
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Movie Watching Robots!
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• Program robots to record 
audio and video 

• Train them to react like a 
human to the movie 

• Run a simulation and collect 
votes from the robots!

Please don’t try to solve everything with AI/ML
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Ranking ML Applications
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What if we Just Guess?
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28,125 
COMBINATIONS

0.00003556 
PROBABILITY

1 of 9 1 of 5 1 of 5 1 of 5 1 of 51 of 5
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Consider Predicting Coin Tosses
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Flip 6

?Heads?Tails

Flip 5

Tails

Flip 4

Tails

Flip 3

Heads

Flip 2

Tails

Flip 1

After observing the first five flips as above, 
what is the probability that flip 6 is Heads?

Prob 
 50%

As stated, these events are independent, so the 
previous flips do not matter.
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Consider Predicting Coin Tosses

17

Flip 6

?Heads?

Prob 
<50%

What if this wasn’t a fair coin?  
Idea: movies are not “equally” likely to be Best 
Picture…

Tails

Flip 5

Tails

Flip 4

Tails

Flip 3

Heads

Flip 2

Tails

Flip 1
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Let’s Predict Best Picture
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Win

London 
Critics

Lose

Writers 
Guild

Win

Directors 
Guild

Win

Golden  

Win

Bafta

• These events are *not* independent 
• Similar, but not identical, factors contribute to 

each win… 
• We can expect a higher probability for Shape of 

Water to win

Oscar

?Win?
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The Features
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MOVIES AWARDS OBJECTIVE 

• year 
• movie 
• movie_id 
• certificate 
• duration 
• genre 
• rate 
• metascore 
• synopsis 
• votes 
• gross 
• release_date 
• user_reviews 
• critic_reviews 
• popularity 
• awards_wins 
• awards_nomination

s 
• release_date.year 
• release_date.mont

h 
• release_date.day-

of-month 
• release_date.day-

of-week

• Oscar_Best_Picture_nominated 
• Oscar_Best_Director_nominated 
• Oscar_Best_Actor_nominated 
• Oscar_Best_Actress_nominated 
• Oscar_Best_Supporting_Actor_nominated 
• Oscar_Best_Supporting_Actress_nominated 
• Oscar_Best_AdaScreen_nominated 
• Oscar_Best_OriScreen_nominated 
• Oscar_nominated 
• Oscar_nominated_categories 
• Golden_Globes_won 
• Golden_Globes_won_categories 
• Golden_Globes_nominated 
• Golden_Globes_nominated_categories 
• BAFTA_won 
• BAFTA_won_categories 
• BAFTA_nominated 
• BAFTA_nominated_categories 
• Screen_Actors_Guild_won 
• Screen_Actors_Guild_won_categories 
• Screen_Actors_Guild_nominated 
• Screen_Actors_Guild_nominated_categories 
• Critics_Choice_won 
• Critics_Choice_won_categories 
• Critics_Choice_nominated 
• Critics_Choice_nominated_categories 
• Directors_Guild_won 
• Directors_Guild_won_categories 
• Directors_Guild_nominated 
• Directors_Guild_nominated_categories 
• Producers_Guild_won 
• Producers_Guild_won_categories 
• Producers_Guild_nominated 
• Producers_Guild_nominated_categories 
• Art_Directors_Guild_won 
• Art_Directors_Guild_won_categories 
• Art_Directors_Guild_nominated 
• Art_Directors_Guild_nominated_categories 
• Writers_Guild_won 
• Writers_Guild_won_categories 
• Writers_Guild_nominated 
• Writers_Guild_nominated_categories 

• Costume_Designers_Guild_won 
• Costume_Designers_Guild_won_categories 
• Costume_Designers_Guild_nominated 
• Costume_Designers_Guild_nominated_categories 
• Online_Film_Television_Association_won 
• Online_Film_Television_Association_won_categories 
• Online_Film_Television_Association_nominated 
• Online_Film_Television_Association_nominated_catego

ries 
• Online_Film_Critics_Society_won 
• Online_Film_Critics_Society_won_categories 
• Online_Film_Critics_Society_nominated 
• Online_Film_Critics_Society_nominated_categories 
• People_Choice_won 
• People_Choice_won_categories 
• People_Choice_nominated 
• People_Choice_nominated_categories 
• London_Critics_Circle_Film_won 
• London_Critics_Circle_Film_won_categories 
• London_Critics_Circle_Film_nominated 
• London_Critics_Circle_Film_nominated_categories 
• American_Cinema_Editors_won 
• American_Cinema_Editors_won_categories 
• American_Cinema_Editors_nominated 
• American_Cinema_Editors_nominated_categories 
• Hollywood_Film_won 
• Hollywood_Film_won_categories 
• Hollywood_Film_nominated 
• Hollywood_Film_nominated_categories 
• Austin_Film_Critics_Association_won 
• Austin_Film_Critics_Association_won_categories 
• Austin_Film_Critics_Association_nominated 
• Austin_Film_Critics_Association_nominated_categories 
• Denver_Film_Critics_Society_won 
• Denver_Film_Critics_Society_won_categories 
• Denver_Film_Critics_Society_nominated 
• Denver_Film_Critics_Society_nominated_categories 
• Boston_Society_of_Film_Critics_won 
• Boston_Society_of_Film_Critics_won_categories 
• Boston_Society_of_Film_Critics_nominated 
• Boston_Society_of_Film_Critics_nominated_categories 
• New_York_Film_Critics_Circle_won 

• Oscar_Best_Picture_wo
n 

• Oscar_Best_Director_w
on 

• Oscar_Best_Actor_won 
• Oscar_Best_Actress_wo

n 
• Oscar_Best_Supporting

_Actor_won 
• Oscar_Best_Supporting

_Actress_won

Data pulled from IMDB…

Engineered Features:
Award items field

Nomination Counts

Awards Counts
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Oscars Dataset

20

DATASET is publicly available: 


https://bigml.com/user/academy_awards/gallery/dataset/
5a94302592fb565ed400103b

https://bigml.com/user/academy_awards/gallery/dataset/5a94302592fb565ed400103b
https://bigml.com/user/academy_awards/gallery/dataset/5a94302592fb565ed400103b
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Oscars Example
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• When specifying the problem, be as specific as possible 
• Not: “Let’s predict the Oscars” 
• Instead: “Let’s Predict the Oscars by correlating a series 

of award wins with the final Oscar win.” 
• The statement of the problem will guide the data required 
• Be aware of the cost of collecting the data versus the ROI:

Tidbits and Lessons Learned….
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Effort of a ML Application
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State the problem as an ML task

Data wrangling

Feature engineering

Modeling and Evaluations

Predictions

Measure Results

Data transformations ~80% effort

~5% effort

~5% effort

This is only such low 
effort because of 
platforms like 

This is an area where  
             is currently 
innovating

Task

~10% effort

Effort
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Oscars Example
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• When specifying the problem, be as specific as possible 
• Not: “Let’s predict the Oscars” 
• Instead: “Let’s Predict the Oscars by correlating a series 

of award wins with the final Oscar win.” 
• The statement of the problem will guide the data required 
• Be aware of the cost of collecting the data versus the ROI: 

• IMDB data is readily available 
• Start small and go straight to the desired result 

• We’re done right?  
• Nope. You can’t escape Feature Engineering 
• Items: BAFTA_won_categories = list of nominations 
• Aggregations: Nomination and Award counts 

• You can’t escape Feature Selection 
• Full user reviews costly to collect and not useful

Tidbits and Lessons Learned….

Wait: How were you confident in the predictions?
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Evaluating the Models
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119 variables

2000

2016

119 variables

2000

2012

119 variables

2013

2016

119 variables

Original Dataset

Test Dataset

Train Dataset

• Ultimately, we want to use all the history to predict the winner 
for the current year 

• In order to evaluate success, we use a model built from 
2000-2012 data to predict the winners for 2013-2016 

• Built a separate Deepnet for each award category 
• Evaluation obtained a ROC AUC over 0.98 across all award 

categories
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Reality Check
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• All Machine Learned models are wrong

Three Important Concepts in Applying ML…

• Real-world Machine Learning is iterative

• End-to-end Machine Learning is compositional
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• Better features always beat better algorithms 
• Good algorithms already exist and are good enough 
• Tools like OptiML exist which can help optimize performance 
• The data is never good enough

Tenets of Machine Learning
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• All Machine Learned models are wrong

• Real-world Machine Learning is iterative

• End-to-end Machine Learning is compositional

• Automation is better than hand tuning - you need an API! 
• When data changes quickly, training speed is more 

important than accuracy 
• Repeatability is superior to a single strong result

• Problems are solved with workflows of algorithms 
• A ML solution is not real until it is in production 
• ML is here: Now we need 100,000x people applying ML

, but some are useful
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Your Turn!

27

• What are some problems you can solve with ML? 
• Do you have the data 

• Where is it? Can you get it? 
• Does it need cleaning (hint: yes) 
• What ML tasks will be involved? 

• Remember: go straight to the result 
• Prove it before you build it 
• Use Models and Logistic Regressions to start 
• Spend time on features and introspection




